...
Інформація. Медична інформація, її властивості. Інформативність та валідність медичних даних PDF Печать E-mail

Інформація. Медична інформація, її властивості. Інформативність та валідність медичних даних

У "докомп'ютерний період" під терміном "інформація" розуміли віддзеркалення реального світу. Нині поняття "інформація" включає всі відомості, знання, сукупність засобів та правил, міру будь-чого, що є об'єктом зберігання, передачі та перетворення за допомогою комп'ютера. Інформація – це відомості про когось або про щось, передані у формі знаків та сигналів.
Оцінка кількості інформації
На сьогодні кількість інформації прийнято вимірювати в таких одиницях системи СІ, як біт і байт. Ці одиниці використовуються також для вимірювання ємності (об'єму) пам'яті.
Біт – найменша одиниця кількості інформації, що відповідає одному розряду двійкового коду. Практично: 1 – є напруга, сигнал; 0 – немає напруги, сигналу.
Байт – основна одиниця кількості інформації в комп'ютерній техніці, більша, ніж 1 біт, відповідає восьми розрядам двійкового коду: 1 байт = 8 біт. Байт – це кількість інформації про один символ (букву, цифру, знак).
Нарівні з бітами та байтами використовують і більші одиниці:
– 1 кілобайт = 1Кбайт = 210 = 1024 байтів (приблизно 1 тис. байтів);
– 1 мегабайт = 1Мбайт =220=1024х1024 байтів = 1048576 байтів (приблизно 1 млн. байтів);
– 1 гігабайт = 1Гбайт =230 =109 байтів =1024 Мбайт (приблизно 1 млрд байтів);
– 1 терабайт = 1 Тбайт = 240= 1012байтів = 1024 Гбайт;
– 1 петабайт = 1 Пбайт = 250= 1015 байтів = 1024 Тбайт.
Слід пам'ятати, що будь-яка інформація тільки тоді обробляється на комп'ютері, якщо вона представлена мовою двійкової системи.
Одним із найпоширеніших кодів у світі є код ASCII (American standard code for information interchange – американський стандартний код для інформаційного обміну). У російському поширенні він отримав назву АСКОІ – алфавітний код обробки інформації. Цей код прийнято як стандарт (його версія КОІ-8). Кожний символ у цьому коді представлено восьмирозрядним двійковим числом (байтом). Всього існує 256 різних послідовностей з 8 нулів та одиниць – це дає змогу закодувати 256 різних символів. Приклад кодування за версією КОІ-8 (коди для російських літер):
К=11101011
И=11101001
Е=11100101
В=11110111
Якщо прочитати цю інформацію, представлену такою послідовністю, як 11101011111010011110010111110111,то отримаємо слово "Киев". Таким чином можна кодувати і графічну інформацію.
У графічному середовищі Windows використовують такі системи кодування, як ANSI, Windows 1251, КОІ-8, ISO, UNICODE. Багато Windows-програм при експорті-імпорті файлів автоматично виконують перетворення з однієї системи кодування в іншу та навпаки. У сучасних ПК крім двійкової системи числення застосовують і інші, компактніші за довжиною чисел системи. Важливо запам'ятати, що з будь-якої системи числення можна перейти до двійкового коду.
Інформація – це дані та знання. Знання включають систему понять, суджень, уявлень та образів. Знання непросто здобувати. Вони генеруються тільки людьми. Характеризуються певною швидкістю передачі та сприйняття. Саме знання висувають актуальні завдання і проблеми часу, багато з яких розв'язується універсальними засобами математики. Знання та розв'язання завдань зосереджено у виконуваних на комп'ютері програмах. Змінюючи програми для комп'ютера, можна перетворювати його на робоче місце бухгалтера, конструктора, лікаря та ін. Що наближеніша будь-яка наука до точних наук, тим успішніше розв'язуються її завдання шляхом створення різноманітного прикладного програмного забезпечення (ППЗ). Що віддаленіші науки від точних, тим вирішення їхніх завдань складніше і тим важче створити їхнє ППЗ.
Дані – це числа, символи, слова, які фіксуються в документах та передаються засобами зв'язку, обробляються засобами обчислювальної техніки незалежно від їх змісту. Вони статичні, легко сприймаються та передаються, пов'язані зі знаннями, можуть генеруватися людьми, комп'ютерами, використовуватися ким завгодно та коли завгодно.
Медична інформація – це медичні знання та дані. Властивості медінформації: об'єктивність, повнота, достовірність, доступність, актуальність, валідність (адекватність). Саме об'єктивність, повнота, достовірність, доступність, актуальність характеризують інформативність медичних даних. Наприклад, криві ЕКГ, ЕЕГ характеризуються винятковою інформативністю для встановлення діагнозу та ухвалення рішень. Валідність (від лат. validus – сильний, міцний) відіграє в теорії інформації вузлову роль. У першу чергу – це надійність інформації, обґрунтованість та адекватність, відсутність у ній помилок. Наприклад, фармакологічні властивості наданого препарату мають прийматися як обґрунтовані надійні відомості, тобто вони мають бути валідними. Саме інформативність та валідність медичних даних роблять їх цінними у кожному конкретному випадку медичної практики. Тому саме цим властивостям медичної інформації – інформативності та валідності – приділяється особлива увага.
Медичні знання – це висновки багатовікової діяльності людини, сформовані та відтворені в медичних науках. З погляду інформатики медицина не є конкретною наукою, тобто в медичних знаннях мало простежується кількісних законів, виражених у формулах. Водночас проблем та завдань профілактики, діагностики та лікування медичні дисципліни висувають досить багато. Тому написання ППЗ для медичних предметних галузей є складнішим завданням, ніж написання ППЗ для дисциплін, наближених до точних наук (пригадайте уроки програмування в школі, коли як умови використовувалися чіткі задачі з математики, фізики, хімії). Виходячи із завдань, що висуваються медичними знаннями, фахівці в галузі медінформатики застосовують для їх вирішення не тільки класичну математику (алгебра, теорія чисел, геометрія та ін.), а й розділи прикладної математики (математичний аналіз, ймовірнісно-статистичні підходи, математичне моделювання та ін.). Завдяки цим методам медична інформатика вирішує завдання, що генеруються медичними знаннями, та має як специфічне, так і універсальне ППЗ. ППЗ складається з різних МІС: довідково-інформаційних, різноманітних діагностичних програм, програм моделювання та системи розпізнавання, експертних систем, програм візуалізації в комп'ютерних діагностичних комплексах.
Медичні дані – факти та відомості, які відтворюють явища та процеси фізіологічного, анатомічного, хіміко-біологічного характеру, що безпосередньо стосуються медицини та охорони здоров'я. Вони є первинним матеріалом, сировиною для подальшої обробки. Це та фактична медична інформація, яка безпосередньо обробляється комп'ютером. Будь-який набір даних, систематизованих та взаємоорганізованих для швидкого пошуку, формує Бази даних та Банки даних.
Збір медичних даних є непростим завданням. У ході лікувально-діагностичного процесу інформаційні потоки великі та складно організовані. Учасники лікувально-діагностичного процесу передають один одному велику кількість відомостей про об'єкт цього процесу – пацієнта.
Дискретні та аналогові медичні дані
Медичні дані у зв'язку зі значними обсягами та різноманітністю типів підлягають систематизації. За способом обробки на ПК медичні дані поділяють на дискретні та аналогові. Поняття дискретності, переривчастості відоме з курсу математики (переривчастість функції) та фізики (дискретність корпускулярної теорії світла, квантової теорії).
Дискретні медичні дані – це дані, які вводяться в комп'ютер з клавіатури, тобто тексти, цифри, знаки, як підлягають відомій цифровій обробці. Ними можуть бути:
– скарги, низка клінічних параметрів, що характеризують загальний стан хворого;
– результати лабораторних досліджень;
– результати інструментальних досліджень;
– діагнози;
– статистичні дані;
– медична документація та ін.
Аналогові медичні дані включають:
– безперервні криві медико-біологічних параметрів, одержаних за допомогою спеціальної апаратури – приладів функціональної діагностики: реограми, електрокардіограми, електроенцефалограми, криві температури тіла, частоти дихання, артеріального тиску та ін. Ці біосигнали несуть у собі важливі відомості про стан здоров'я пацієнта, і їх розшифровування вимагає часом негайних висновків. Розшифрувати подібну інформацію швидко та без погрішностей можна за допомогою сучасних комп'ютерних технологій;
– інформаційні промені – хвильові процеси різної фізичної природи (інфрачервоне, рентгенівське, радіоактивне випромінювання, ультразвук та ін.), які використовуються в комп'ютерних діагностичних комплексах. Інформаційні промені обов'язково перетворюються на безперервні електричні сигнали різними способами, при цьому їхні параметри відповідають біофізичним характеристикам.
Аналогові дані не вводяться в ПК з клавіатури. Вони подаються на нього за допомогою спеціального пристрою, який виконує функцію відцифровування аналогових даних. Як відомо, будь-які дані можуть бути оброблені на ПК тільки за умови їх переведення в числову, дискретну форму, тобто в цифровий код. Одним зі стандартних пристроїв перетворення безперервного електричного сигналу на серію окремих цифрових сигналів для введення інформації в комп'ютер або мікропроцесорний пристрій служить аналогово-цифровий перетворювач.
Аналогово-цифровий перетворювач (АЦП) – пристрій, що перетворює вхідний аналоговий сигнал на дискретний код, тобто цифровий сигнал (мал.1).

Аналогово-цифрове перетворення використовується в безлічі електронних пристроїв: від звукових карт та студійного звукозаписного устаткування до наукових та медичних приладів, тобто скрізь, де потрібно обробляти, зберігати або передавати сигнал у цифровій формі.
Зворотне перетворення здійснюється за допомогою цифрово-аналогового перетворювача (ЦАП): у медицині при виведенні на екран зображення внутрішніх органів у ході застосування методів візуалізації (ультразвукове дослідження (УЗД), комп'ютерна томографія (КТ)), відтворенні знімків, переданих мережею. ЦАП є інтерфейсом між абстрактним цифровим світом та реальними аналоговими сигналами. ЦАП входить до складу графічної плати (графічна карта, відеокарта, відеоадаптер) комп'ютера.
Після перетворення відцифрована інформація потрапляє в ПК, де обробляється програмним забезпеченням та, пройшовши зворотне перетворення за допомогою ЦАП, подається на пристрій виведення у вигляді зображення органів, графічної моделі процесу, сигналу тривоги та ін. На сьогодні створено комп'ютери, оснащені пристроями як прямого, так і зворотного перетворення аналогового сигналу. Розроблено аналогово-цифрові та цифрово-аналогові контролери, за допомогою яких можна підключити медичну техніку до комп'ютера через його внутрішні шини або зовнішні роз'єми.
Як приклад універсального технічного приладу відцифровування медінформації можна навести цифрову фотокамеру, яка дає змогу відцифровувати при фотографуванні основні діагностичні (рентгенограми, сонограми, томограми), допоміжні (клінічні фотографії, відеозйомка пацієнта), графічні (електро-грами), пояснювальні графічні (малюнки) дані.
Пряме та зворотне відцифровування інформаційних променів в апаратно-комп'ютерних комплексах наведено на схемі 1.

Стандарти медичних даних
Для того щоб медична інформація була зрозумілою всім (людям та комп'ютерам), розробляють стандарти медичних даних. Стандарти даних є єдиними вимогами до оформлення, зберігання та передачі медичних даних. Стандарти можуть бути виражені в кодах, шаблонах медичних документів, обов'язкових умовах проведення досліджень та ін.
Стандарти даних необхідні для ефективного спілкування ІЕ зарубіжними колегами. Стандарти даних дають змогу здійснювати активний пошук інформації в базах даних, оперативний та коректний статистичний аналіз. Розробка власних варіантів подання медичних даних, що проводилася раніше майже в кожному ЛПЗ різних рівнів, унеможливлює їх порівняння. Стандарти медичних даних, які сьогодні існують в Європейських країнах та США, розроблялися протягом кількох десятиріч та включають працю тисяч лікарів і системних аналітиків. З 1996 року ведуться активні роботи зі створення телемедичних стандартів та додатків для зберігання, застосування та ефективного електронного обміну під керівництвом Всесвітньої організації зі стандартизації (ISO). У першу чергу, слід згадати американську ініціативу: вперше в світовій практиці створено стандарти в галузі подання лабораторної інформації (LOINC), зображень (DICOM), обміну медичною інформацією (HL7, GEHR). У жовтні 1999 року було розроблено та запропоновано до використання стандарти для оформлення рецептів, первинних обстежень, звітів, візуальних результатів аналізів та ін.
Практично всі стандарти медичної інформатики так чи інакше пов'язані з уведенням електронної історії хвороби. Вони описують термінологію, яка має бути в ній використана, передачу медичних документів та зображень, способи організації даних та забезпечення доступу медичних працівників до електронної історії хвороби тощо. У цілому ці стандарти потрібні для того, щоб кожний запис електронної історії хвороби був однаково зрозумілим представникам різних медичних шкіл. Проте єдиного, загальноприйнятого визначення електронної історії хвороби дотепер не існує. Окрім цього, це поняття еволюціонує вже протягом ЗО років з прогресом інформаційних технологій. В англомовній літературі змінювалися навіть абревіатури, що позначають електронну історію хвороби: спочатку EMR (Electronic Medical Record), тепер EPR (Elecronic Patient Record), EHR (Electronic Health Record) та EHCR (Electronic Healthcare Record). Приклад однієї з останніх змін у концепції ведення електронної історії хвороби: доки діагностичні пристрої та медичні вимірювальні пристрої були відносно простими, вважалося, що записи в електронну історію хвороби можуть здійснюватися медичними працівниками. Нині допускається, щоб такі записи проводилися без участі людини з різних діагностичних та лабораторних пристроїв. Було введено спеціальний термін Healthcare Agent, тобто "агент медичного закладу".
Короткий опис деяких світових стандартів медичних даних
Стандарт HL7 (Health Level 7) призначений для полегшення взаємодії комп'ютерних додатків у закладах охорони здоров'я, обміну зовнішніми даними. Використовується не тільки в США, айв Австрії, Австралії, Великобританії, Німеччині, Ізраїлі, Канаді, Японії та ін.
Стандарт DICOM (Digital Imaging and Communications in Medicine) є медичним стандартом, що інтенсивно розвивається і служить для передачі радіологічних цифрових зображень та іншої медичної інформації між комп'ютерами.
Стандарт DICOM описує паспортні дані пацієнта, умови проведення дослідження, положення тіла в момент отримання зображення тощо, щоб надалі можна було здійснити медичну інтерпретацію зображення. Стандарт дає змогу організувати цифровий зв'язок між різним діагностичним та терапевтичним обладнанням. Робочі станції, комп'ютерні та магнітно-резонансні томографи, мікроскопи, ультразвукові сканери, загальні архіви, хост-комп'ютери, розташовані в одному місті або кількох містах, можуть "спілкуватися" один з одним на основі DICOM з використанням відкритих мереж за стандартними протоколами (мал.2). Наприклад, зображення, отримане із застосуванням комп'ютерного томографа (мал.3), передається за допомогою стандарту DICOM, який набув значного поширення в США, Японії, Німеччині та інших країнах.

В останні десятиріччя зусилля фахівців зосереджено в двох основних напрямах: стандартизація медичної термінології та стандартизація передачі записів в електронну історію хвороби, оскільки запис історії хвороби, що був зрозумілий з помилкою, може коштувати пацієнту життя. Найбільших успіхів досягли дві англомовні країни – США та Великобританія. У першій було розроблено Уніфіковану систему медичної мови UMLS та обширну номенклатуру медичних термінів SNOMED, у другій – Клінічні коди Ріда RCC (див. додаток 1).
В Україні на сьогодні не існує вітчизняних аналогів перерахованих вище стандартів. Хоча в окремих медичних центрах ведеться робота з уніфікації способів зберігання, використання медичних даних та ефективного електронного обміну ними, проте ці способи не є загальноприйнятими, універсальними. Перехід від національних стандартів подання медичних даних до світових є проблемою сучасної медичної інформатики.
Говорити про створення єдиної системи світових стандартів даних у медицині рано, проте ця проблема перебуває на етапі вирішення. Сьогодні найвідомішою та найпоширенішою є Міжнародна статистична класифікація хвороб, травм та причин смерті (МКХ), яка періодично (1 раз у 10 років) переглядається під керівництвом ВООЗ. МКХ-10 прийнято державами світу. Це нормативний документ, що забезпечує міжнародну порівнянність матеріалів. У ній використано алфавітно-цифрову кодову систему. За основу кодування взято арабські цифри та латинський алфавіт.
Наприклад, вітряна віспа – В01, гострий ВІЛ-інфекційний синдром – В23.0, безсимптомний інфекційний статус, спричинений ВІЛ, – Z21, гострий гепатит А – В15, гострий гепатит В – В16, туберкульоз органів дихання – А15.2, рання стадія сифілісу – А51 і т. д.
МКХ-10 вирішує лише частину проблем стандартизації даних, вона є початком в освоєнні глобального інформаційного простору всесвітньої охорони здоров'я. Таким чином, до чергових завдань сьогодення та майбутнього медичної інформатики належать розробка та упровадження міжнародних стандартів подання медичної інформації, особливо клінічної та лабораторної, з подальшим доведенням їх до рівня регіонів.

 

Яндекс.Метрика >